SPECIALTY RESIN

PROBLEND™ NUCLEAR GRADE HIGH POROSITY MIXED-BED RESIN

ProBlend NG-HP (P/N ER30003) — When it's quantity of TDS removal you're after, there is no better choice. Each lot is tested and certified to reach 15 megohm water when challenged with 10 megohm water. This is the choice for laboratory and cartridge applications. Our Nuclear Grade utilizes a porous anion blended with our ProSoft™ Premium cation to achieve the highest loading rates available in a mixed-bed resin.

FEATURES

- Conforms to paragraph 21 CFR173.25 of the Food Additives Regulations of the FDA
- Designed to provide ultra-high purity water
- High operating capacity
- Low effluent TOC values
- Superior organic fouling resistance
- Excellent regenerable capacities for inorganic and organic irons

Physical Properties

Functional Structure	
Cation	RSO3 ⁻ H+ (Hydrogen
Calion	, , ,
	form gelular sulfonated
	polystyrene copolymer)
Anion	R4 N+OH- (Hydroxyl form
	Type 1 porous gel strong
	base alkyl quarternary
	ammonium polystyrene
	copolymer)
Physical Form	Spherical beads
Screen Size Distribution	
+16 mesh (U.S. Std.)	2% maximum
-45 mesh (U.S. Std.)	2% maximum
Moisture Content (as shipped)	
Volume Ratio (as shipped)	
Cation (Na+ form)	36%
Anion (Cl ⁻ form)	
Total Capacity	0.170
Cation (Na+ form)	1.95 meq/mL minimum
Cation (H+ form)	1.85 meq/mL minimum
Anion (CLT form)	1.25 meq/mL minimum
Anion (OH ⁻ form)	1.00 meq/mL minimum
Approximate Shipping Weight	43 lb/cu.ft. (720g/l)
Standard Packaging	5 or 7 cu.ft. plastic lined
	fiber drums

Suggested Operating Conditions

Maximum Temperature	
Non-regenerable *	175°F (80°C)
Regenerable	140°F (60°C)
Operating Flow Rate (Typical)	2 to 10 gpm/cu.ft.
pH Range	0 to 14
Backwash Rate (See graph on next page)	
Pressure Drop (See graph on next page)	
Metals Content (Typical ppm dry weight)	
Iron (Fe)	100 ppm maximum
Copper (Cu)	50 ppm maximum
Lead (Pb)	50 ppm maximum
Percent Conversions to Ionic Form	
Cation H	99% minimum
Anion OH	90% minimum **
Anion Cl + SO4	10% maximum
Anion CO3	** (See note below)

Column Operating Capacity

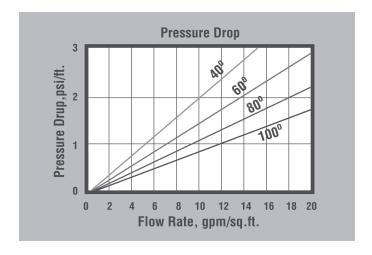
0.55 meq/mL (12 Kgrs/cu.ft.) minimum to electrolyte breakthrough during initial cycle.

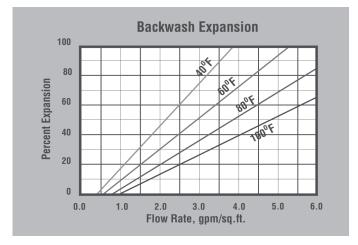
Limitations

Extended exposure to strong oxidizers, such as chlorine, hydrogen peroxide, and concentrated nitric acid, degrade the structural backbone of the resin and should be avoided.

- * 6 month typical resin life at 175°F (80°C).
- ** Hydroxides and CO3 levels measured immediately after production and may change during storage and shipment due to adsorption of CO2 from the atmosphere.

CAUTION: DO NOT MIX ION EXCHANGE RESINS WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials such as ion exchange resins.


Note: These suggestions and data are based on information we believe to be reliable. However, we do not make any guarantee or warranty. We caution against using these products in any unsafe manner or in violation of any patents. Further, we assume no liability for the consequences of any such actions.


SPECIALTY RESIN

PROBLEND™ NUCLEAR GRADE HIGH POROSITY MIXED-BED RESIN

PRESSURE DROP — The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH — The backwash step is used to separate the components prior to regeneration and to remove particles. The separation is optimized at a bed expansion of 50 to 75 percent.

ProBlend High Porosity Resins Comparison Table

Specifications	Nuclear Grade (P/N ER30003)	Semi- Conductor (P/N ER30002)	Low TOC Throw (P/N ER30011)	Ultra Low TOC Throw (P/N ER30012)
Resistivity in polishing 18 megohm water @ 60 bed volumes per hour (megohm)	> 15 **	> 18	> 18	> 18
Leachable TOC @ 25 bed volumes from start up (ppb as C) *	No Spec	No Spec	< 25	< 25
Leachable TOC @ 50 bed volumes from start up (ppb as C) *	No Spec	< 50	< 10	< 5
Leachable TOC @ 100 bed volumes from start up (ppb as C) *	No Spec	No Spec	No Spec	< 2

^{*} Leachable TOC measured at 0.5 bed volumes per minute at 175°F (80° C).

^{**} Influent greater than 1 megohm.